
10. S. K. Kanaun, "Self-consistent field method in the problem of effective properties of an 
elastic composite," Zh. Prikl. Mekh. Tekh. Fiz., No. 4 (]975). 

11. L. Brautman and R. Crock (eds.), Composite Materials [Russian translation], Mir, Moscow 
(1978). 

12. V. S. Ivanova, I. M. Kop'ev, P. R. Botvina, and T. D. Shermergor, Metal Reinforcement 
by Fibers [in Russian], Nauka, Moscow (1973). 

13. R. Christensen, Introduction to the Mechanics of Composites [Russian translation], Mir, 
Moscow (1982). 

14. V. V. Novikov, "Effective coefficient of thermal expansion of an inhomogeneous material," 
Inzh.-Fiz. Zh., 44, No. 6 (1983). 

15. R. H. T. Yeh, "Varlatlonal" " bounds of the elastic moduli of two-phase materials," J. Appl. 
Phys., 42, No. 3 (1971). 

16. O. Tsadi and L. J. Cohen, "Elastic properties of filled and porous epoxy composites," 
J. Mech. Sci., 9, 539 (1967). 

17. H. J. Crowson and R. G. G. Arridge, "The elastic properties in bulk and shear of a glass 
bead-reinforced epoxy resin composite," J. Materials Sci., 1-2, 1254 (1977). 

VISCOPLASTIC DEFORMATION OF ANNULAR PLATES 

S. N. Kosorukov UDC 539.374 

Viscoplasticity is one of the most reliable and convenient methods of taking account of 
the dependence of the strength properties of materials on the loading rate [I, 2]. Analytic 
solutions of problems of quasistatic loading of sufficiently complex structure elements, 
which are convenient to obtain by linearizing the fundamental nonlinear viscoplasticity 
relationships, are of significant interest for practice. 

This paper illustrates the utilization of one of the possible linearization methods. 
The solutions obtained for hinge-supported and clamped annular plates satisfy both the kine- 
matic conditions and the equilibrium equations exactly. 

I. A generalization of the simplest dependences for a stiffly viscoplastic material is 
presented in [I] and reduces to a dynamic flow criterion of the form 

where  k i s  t h e  s h e a r  y i e l d  p o i n t ,  J 2 ,  I2 a r e  t h e  second  i n v a r i a n t s  o f  t h e  s t r e s s  and s t r a i n  
r a t e  d e v i a t o r s ,  y i s  a c o e f f i c i e n t  c h a r a c t e r i z i n g  t h e  r a t i o  b e t w e e n  t h e  v i s c o u s  and p l a s t i c  
p r o p e r t i e s  of  t he  m a t e r i a l ,  ~ i s  t he  symbol  f o r  a c e r t a i n  f u n c t i o n ,  and ~ - i  i s  t h e  symbol  of  
t h e  r e c i p r o c a l  f u n c t i o n .  

The a s s o c i a t e d  f l o w  law r e m a i n s  v a l i d .  The n o n l i n e a r  Mises  c o n d i t i o n  i s  u s e d  h e r e  as  
the initial flow condition in stresses. The radius of the circular cylindrical flow surface 
in the space of the principal stresses is determined also by a nonlinear combination of the 
principal strain rates. It is easy to see that points of the ellipse (Fig. 1) in the plane 
of the principal strain rates el -- s2 correspond to points lying on an ellipse similar to 
the Mises ellipse in the plane of the principal stresses 01 -- 02 for the plane stress state 
of an incompressible material. To linearize the initial nonlinear relationship it is suf- 
ficient to replace the ellipses by certain similar polygons by conserving the similarity of 
such polygons as the sizes change. For instance, if the ellipse J2 = const is replaced by 
the hexagon I (Fig. la), similar to the Tresk hexagon, then by replacing the ellipse I2 = 
const by hexagons ] or 2 (Fig. Ib), we obtain the relationships, respectively, for the linear 
function F 

m a x ( o -  zl~)= o , r l  ~tmaxl<;I, m a x ( z a - - o r ) =  r + ( t / 2 ) p b u - s g l '  ( 1 . 2 )  

where the subscripts ~, ~ correspond to the maximal and minimal values of the quantities; 
ey is the maximal strain rate in absolute value, and p = 3k/2y is the viscosity coefficient 
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determined experimentally in the uniaxial stress state. 

Such a linearization method, in contrast to that proposed earlier by Prager [2], retains 
the isotropy of reinforcement associated with the strain rate assumed by the initial rela- 
tionship (1.1). However, it should be noted that the initial relationship possesses still 
another remarkable property, namely: Not only is the normal to the instantaneous flow surface 
in agreement in direction with the deformation vector, but also the normal to the curve I2 = 
const agrees with the stress vector, i.e., this curve is a surface of the dissipative func- 
tion level [3]. Only the relation (1.2) (hexagon I, Fig. Ib) possesses such a property for 
the initial Tresk flow condition (hexagon 2, Fig. la), and only the hexagon 2 (Fig. Ib) pos- 
sesses this property for the initial flow condition of the maximal reduced stress (hexagon 2, 

Fig. la). 

The relationship (1.2) will be used below. For plates subjected to axisymmetric bending, 
we can obtain [4] in this case 

maxim --mg]= t ~lk~l, (1.3) 

where ml = M1/Mo, m2 = M2/Mo, Ml, M2 are the radial and circumferential bending moments, Mo = 
OT h2, m3 = 0, ka = --(ks + k2), kl and k2 are the rates of change of the dimensionless curva- 
tures, v = 2~h/(30TR); and R, 2h are the external radius and thickness of the plate. 

The rates of curvature are determined by the expressions 

d2w t dm (1.4) 
kl = - -  dp 2'' k2 = ~  p dp" 

w h e r e  w, p a r e  t h e  d e f l e c t i o n  r a t e  a n d  t h e  r u n n i n g  r a d i u s  r e f e r r e d  t o  t h e  r a d i u s  R.  

The problem of deformation of a hinge-supported circular plate subjected to uniform 
pressure for different kinds of dependences between the stress and the strain rates is ex- 
amined in [I, 2, 4, 5]. The problem of viscoplastic deformation of annular plates is solved 

below. 

2. Let a hinge-supported plate with an orifice of radius a be loaded along the edge of 
the orifice by a force P. Using the equilibrium equation in the form 

d(pmJ/dp'--m2 = --p (p = p/(2~Mm)) ( 2 . 1 )  

o r  
dm/dp + (m i - -  mJlp = --p/p, ( 2 . 2 )  

the boundary conditions 

ml = 0whenp = $ = a/R, p = I (2.3) 

and (1.3) and (1.4), it can be shown that the point J (see Fig. la) cannot be taken as the 
flow condition in any finite interval of variation of p and it is impossible to construct a 
statistically allowable field of internal forces in the case under consideration by using the 
line JN. Indeed, the conditions ml = 0, m2 = I + vk2 resulting sequentially in the expres- 
sions m2 = p, k2 = kl = (p -- 1)/v are satisfied for the point J. But in conformity with the 
associated flow law, the inequalities --k2 ~ kl ~ 0 that are not compatible with the expres- 
sions written above,--should be satisfied. 

If the line JN is taken as the flow condition, then the condition kl = --k2 (the point A, 
Fig. Ib) resulting in a value of the circumferential curvature rate k2 = C/p 2 should be satis- 
fied, where C is the constant of integration. 

The flow condition mx -- m2 = I + ~k2, the equilibrium equation (2.2), and the boundary 
conditions (2.3) result in the expression 

m,=(p--t)[~21~(~-ZP2)--lnp].,,~(l._~ ~) 

It is easy to show that the moment ml is positive for p < I, which contradicts the flow 
condition JN. 

The flow condition corresponding to the line JS 

m,2:=l~'Z'~,m,>O, mli<m2 (2.4) 

and its associated condition for the curvature (the point B, Fig. Ib) kl = 0 permit finding 
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w = u,o(i - -  p) / ( i  - -  $), vwo = - - ( p  - -  i ) ( !  - -  .~)'-"la ~, m.~ = - - ( p  - -  ~)[(i  - -  ~).In p - -  (I - -  p) In  $II(,o In ~), ( 2 . 5 )  

by using the expressions (I .4) and (2. I) and the boundary conditions (2.3), where w0 is the 
rate of deflection of the orifice edge. 

It follows from the above that the plate surface becomes conical, while the deflection 
rate is proportional to the difference between the acting load and the limit force for the 
plate of stiffly plastic material. Conservation of the flow conditions for the solution con- 
structed is due to satisfaction of the inequalities (2.4). Using (2.5), we find that the 
extremal value is ml = (p- 1)(eX/ex- I) [x = in~/(~ -- I)]. 

It can be shown that for any value of ~ in the segment (0, I), the inequalities x > I, 
eX/ex > I will be satisfied, i.e., the extremal value ml is always positive. The uniqueness 
of the extremum point and the boundary conditions (2.3) afford the possibility of making the 
deduction that the first of the inequalities (2.4) is always satisfied. To determine the 
conditions for satisfying the second of the inequalities (2.4), we consider the quantity 

ra,, - -  m l =  1 + ( p  - -  t )  (1 - -  ~) ( l n  p - -  1) 
p l n ~  d - t  - -  �9 

Since the second term in the right side can be as close to I as desired for large p, 
we investigate the expression in the square brackets. Its extremal value is fl = (x -- e x-2)/ 
x, where the extremum point for ~ < 0.203 is in the interval [6, I]. The function fl is non- 
negative in the interval of x values [0.1587; 3.1462]. For the relative orifice radius 
this corresponds to the condition 

~ ~, = 0.0504~ ( 2 . 6 )  

On the basis of the above, the deduction can be made that the Solution (2.5) obtained is 
statistically and kinematically allowable for all values of ~ satisfying condition (2.6). 

For an annular plate loaded by a uniformly distributed load q, by solving the equilibrium 
equation 

dml ml  - -  m2 .qlP ql ~2 , __ qR ~ 

for the same boundary condition (2.3) and the flow condition (2.4), we can obtain 

[ ] ( l  - , ~ ) 3 ( i  + 2 ~ )  (2.7) wo (l - - P )  6 - - q ]  
_ W - -  1 - - ~  ' VWo---- ( 1 - - ~ ) ( 1 ~ 2 ~ )  ' . 6 l n  

An analysis analogous to that performed above shows that the first inequality from (2.4) 
is always satisfied, while the second is satisfied for any values of q under the condition 

> 0.1233, i.e., the solution (2.7) obtained is applicable for sufficiently small values of 
the relative orifice. 

3. Let a plate, clampedstiffly along the outeredge, be loaded by a force P distributed 
along the edge of the orifice. Evidently 

w = O, dMdp = O. ( 3 . 1 )  

should be taken as kinematic boundary conditions on the edge p = I. 

This last condition is related to the evident impossibility of the formation of plastic 
hinges in a viscoplastic body. It follows from this condition that the curvature is k2 = 0 
for p = 1 and the flow condition at this edge should contain the point N (see Fig. la). The 
simplest analysis shows that the line MN cannot be the flow condition for any finite domain 
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of variation of the radius. 
once even by the line NJ. Indeed, in this case the equality 

kl = --k2, 

resulting in a differential equation for w 

d 2 w  f "du, 

dp ~ + T  -TY =~ 

whose solution is the expression 

Let us also note that the stress state cannot be determined at 

(3.2) 

w ' = C l  In P + C= ( 3 . 3 )  

should be satisfied because of the associated flow law in a finite domain. 

By virtue of the boundary conditions (3.1) we obtain w - 0. Therefore, near the edge 
p = I a domain of finite dimensions should exist in which the stress state is determined by 
the point N: 

m2 = 0, ml = --{ -]- vkl. (3.4) 

We note the inner boundary of this zone by the radius P2. In this case the equilibrium 
equation (2.1) has the solution 

,1~ 1 = - - p  @ " C / p ,  (3 .5 )  

where C i s  the  c o n s t a n t  of  i n t e g r a t i o n .  

Tak ing  a c c o u n t  of  ( 3 . 4 )  and ( 3 . 5 ) ,  and the  e x p r e s s i o n  (1 .4 )  f o r  k z ,  we can o b t a i n  the  
e q u a t i o n  

d 2 w  p -- { C 

dp 2 - -  'v ~,p " 

whose solution under the boundary conditions (3. I) has the form 

(p - t) (p - ~) c 
w =  2~, - -  -~" (p In p - -  9-1- I). (3.6) 

For p < P2 the flow condition should be represented by the line NJ: 

"2 - -  ml = I q- ~'h, ,nl < O. ( 3 . 7 )  

The condition (3.2) should cor ~spondingly be satisfied, and the displacement is repre- 
sented by (3.3); the flow condition (3.7) and the equilibrium equation take the form 

m2 - -  m,j = I - -  v C l l p  ~, p d m l l d p  = - - ( p  ~ 11) __ v C / p 2 .  

If it is considered that plastic flow in the interval [P2, ~] is characterized by condi- 
tion (3.7), by taking account of the boundary conditions 

,for p = ~ N~ 1 = O, 

for == ----- �9 o 
9=p,.,. m o O, m I ~--1+VCjlp~, 

an equation can be obtained that connects the quantities p2, p,.,and Cl: 

(p --1) (In p2 -- ln[$) ]-7 7T , ~ : :1 .  (3.8) 

The c o n d i t i o n  o f  c o n t i n u i t y  o f  t h e  q u a n t i t i e s  mz and dw/dp f o r  p = P2 y i e l d s  two o t h e r  
equations 

C vC~ C ]n p2 C t 
- p - t - - ~  = - t + -  p-___! ~ ' ~ 0'.,-- 1) ~ P~.  

The system (3.8) and (3.9) reduces to one transcendental equation in P2 

/ 1  1 ~ 1  

(3.9) 

(3.10) 
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The rate of displacement of the orifice edge w0 can afterwards be calculated from the 

formula 

~u'o = (p - -  i ) ( 0~  - -  I )2 /2  - -  C(p2 In  P2 "-" P~ q -  I )  ~l- v C l ( l n  P~ - -  h ,  ~). ( 3 . 1  1 ) 

The condition for applicability of the solution obtained is satisfaction of the inequal- 
ity (3.7), which can in turn be replaced by the inequality 

d,n/dPio= ~ ~ O. (3.12) 

�9 The equality sign in this last expression evidently corresponds for given p to the limit 
value ~lim for which the stress state is still characterized by two zones (3.4) and (3.7). 
Appending this equality in the form 

p -- t . . . .  ~C]/~i m 

to the system (3.8) and (3.9), we find 

- - /  P2 (l ~ P2 In p2 - -  p2 ) 
~lin~: ~ /  ' t + l n p 2  ' 

where p2 is determined from the equation 

( p _ t ) [ l n p 2 _ l n {  Pi(t-?p21np2--P~,) t P2- - t - -p2 lnp2  ] 
l ~- In Pz -- -~- -1- 2p 2 (t -t- in p2 ) =: t. 

It is evident that if the expression in the square brackets in the last equation is 
equated to zero, the value ~lim = ~K obtained will correspond to the minimal orifice size 
for which the solution found above will be true for any quantity p. The dependence of the 
quantity ~lim on the load p is shown in Fig. 2. The critical value is gK = 0.3234 (dashed 
line). The results of computations using (3.8)-(3.11) for the dependences of the deflection 
of the orifice edge and the value of 02 on the acting load are presented in Fig. 3 (lines 
I-3 correspond to ~ = 0.8, 0.6, 0.4). Here P0 = I -- In-i~ is the limit load for a rigidly 

plastic plate with the same value of ~. 

It is legitimate to assume that in those cases when condition (3.12) is spoiled, still 
another plastic zone will appear near the orifice, in which the flow condition will corre- 
spond to the line JS (as has been shown, the point J cannot be a flow condition for a plate in 

a finite interval of variation of the radius). 

Let the zone boundary correspond to the radius 9i (~ < 91 < 02). In conformity with the 
associated flow law kl = 0, which results in an expression for the displacement rate in this 

zone 

(~'o- ~) ( h -  ~') + ' ,  
w = P l  - -  '~ ' 

where wl is the rate of deflection for p = O1. 

Taking account of the flow condition m2 = I + ~k2 the equilibrium equation can be written 

in the form d(pml)/d0 = p -- I + ~C3/p, C3 = (w~ -- wo)/(pl -- ~). 

Solving the last equation with the equality ml = O~ taken into account on the boundaries 

of the interval [01, ~], we obtain the expression 

(p--t)(91 - -  ~)-~-vCa(ln ~ --ln91 ) = O. (3.13) 

From the continuity conditions for ml and dw/d9, we have for 9 = 9i 

C~ vC~ (_~.,i ~) (314) 
Pl - - - -  C3' (p t ) ( lnp~-  l n p l ) + - 7 -  + ~= 1.  

The system (3.9), (3.13), (3.14) permits determination of the unknown quantities C, CI, 
C3, Pl, 02 for given values of p and ~, after which the rate of displacement of the orifice 

edge is determined from the formula 

(p--1)(p~--I) ~ 
~"o - 2 - c (o~ ]~, p~ - % + 1) - v c ,  ( l ~  o~ - 1~ t,~) + ~ c  3 ( o ,  - ~). 

A detailed analysis shows that the solution obtained is applicable for ~ ~ ~K~I = 0.0163. 
The curve ~lim -- P (see Fig. 2) separates the domains of the two and three-zone schemes of the 
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plate flow. The results of computations of the dependences vw0 -- p are presented in Fig. 4 
for the values ~ < ~K (~ = 0.1, 0.2, 0.25, 0.3 are the lines I-4). 

One interesting feature of the solutions obtained for viscoDlastic deformation problems 
should be noted in the case of a linear function ~. The linear dependence of the character- 
istic rates of deflection on the load (2.5), (2.7) is sufficiently regular for all plates in 
the presence of one flow mode, however, an analogous dependence in the presence of several 
zones with moving boundaries is somewhat unexpected. Nevertheless, despite the awkwardness 
of the analysis, the deviations from the linear dependence are not large in all cases for the 
known solutions (see [I, 2, 4-6], Figs. 3 and 4), and are remarked only in the domain of load 
values near the static limit load. For instance, for a circular plate loaded by uniform pres- 
sure [4], the deviations from the linear dependence in the whole range of displacement rates 
do not exceed I% of the static limit load. 
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INVERSE PROBLEM OF ~MBRANE DEFORMATION UNDER CREEP CONDITIONS 

I. Yu. Tsvelodub UDC 539.376 

1. Inverse problems of membrane deformation under creep conditions in a given time in 
a convex surface for minimal energy expenditures occur, for instance, in analyzing technologi- 
cal equipment for pressure treatment of materials in the creep regime [1]. 

Let us consider a membrane occupying a domain S in the xiOx2 plane that is bounded by 
the outline y and is being deformed under the action of external forces q normal to its plane 
and Pk (k = I, 2) applied to u and lying in its plane. The equilibrium equations have the 
form [2] 

a.~.--~ = 0 (~ = l ,  2),  h % z  a.~hax z = - -  q, ( 1 .  1 ) 

where  Ok7 (k ,  ~ = 1, 2) a r e  s t r e s s  t e n s o r  c o m p o n e n t s ,  h i s  t h e  membrane  t h i c k n e s s ,  and  w i s  
its deflection. Summation from I to 2 is over the repeated subscripts. 

The strain tensor components Sk~ (k, 7 = I, 2) are related to the displacement compo- 
nents Uk (k = I, 2) in the xlOx 2 plane and the deflection w by the following dependences [2]: 
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